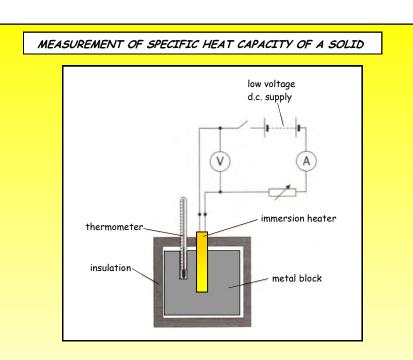

	1				
UNIT 6484	Module 3	4.3.3	Thermal Properties of Materials]	1
• <u>Candida</u>	ntes should be able to :			•	The <u>MASS</u> (m) of the object.
• D	efine and apply the conce	pt of spe	cific heat capacity.		The SMALLER the mass of the object, the LARGER the temperature rise (or fall) for the same heat supplied to
• 5	elect and apply the equat	ion :	E = mcΔθ		(or extracted from) the object.
	escribe an electrical expe eat capacity of a solid of		-		<u>Δθ α 1/m</u>
	escribe what is meant by itent heat of vaporisation		eat of fusion and	•	The MATERIAL of the object.
	SPECIFIC HE				Objects of the same mass, but different material , have a different temperature rise (or fall) with the same amount of heat supplied to (or extracted from) them. This fact is taken into account by a quantity called the HEAT CAPACITY of the object.
	The <u>HEAT ENERG</u> (or extracted from	<u>67 (E) su</u>	pplied to		The <u>HEAT CAPACITY</u> of an object is the amount of heat energy which must be supplied to (or extracted from) it, to make its temperature rise (or fall) by 1 K (or 1°C).
	an object, the GREATER is given mass.		pplied to (or extracted from) rature rise (or fall) for a		So the GREATER the heat capacity of the object, the SMALLER the temperature rise (or fall) for the same amount of heat supplied to (or extracted from) it.
					HEAT CAPACITY only relates to a particular object. A much more useful quantity which is a property of a material, is SPECIFIC HEAT CAPACITY (c).
					FXA © 20

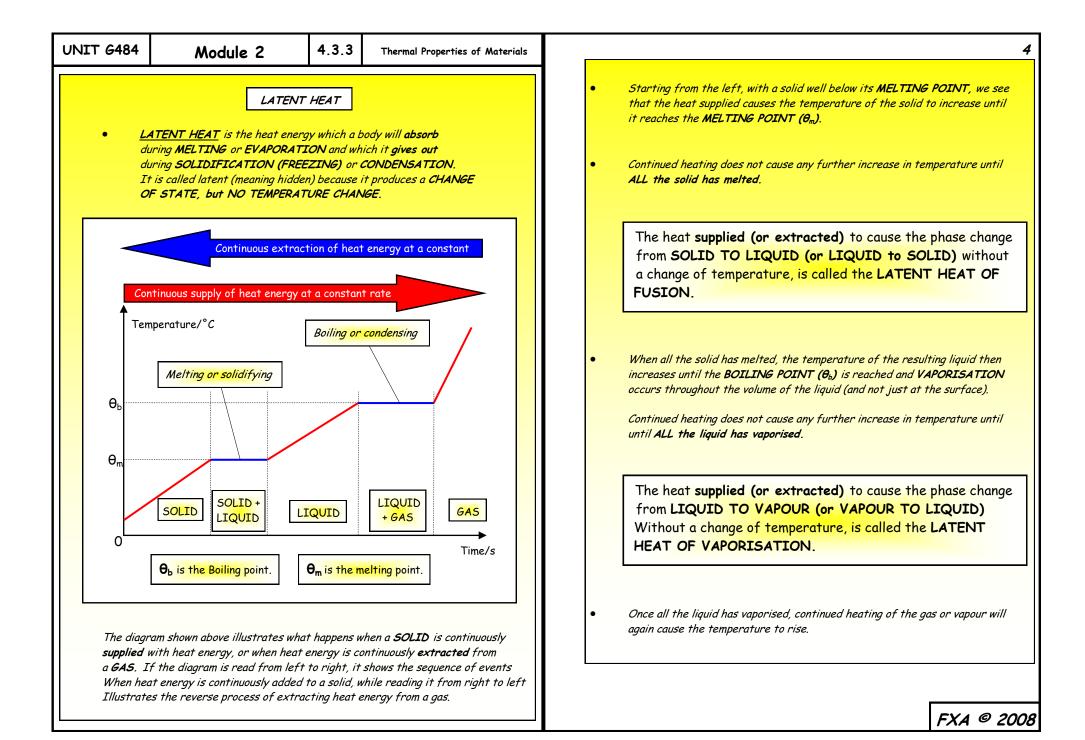


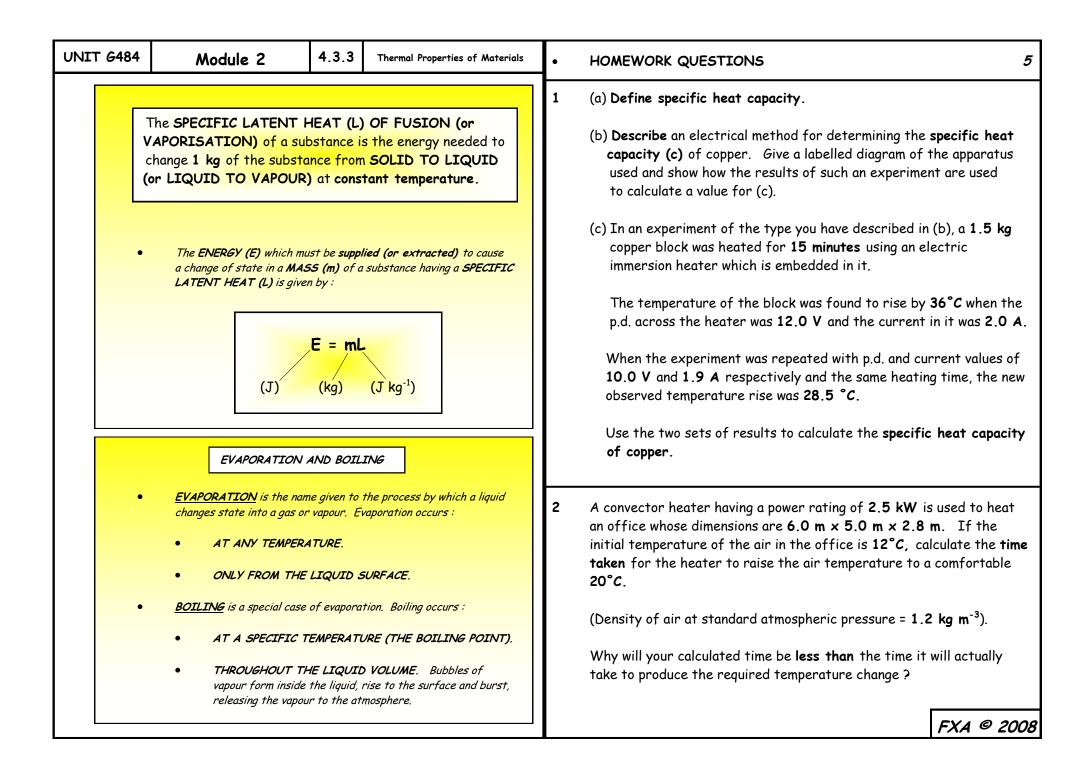
The table below gives some typical SPECIFIC HEAT CAPACITY values :

SUBSTANCE	c/J kg ⁻¹ K ⁻¹
Aluminium	900
Concrete	850
Copper	390
Iron	490
Lead	130
Oil	2100
Water	4200

The amount of ENERGY (E) which must be supplied to a MASS (m) of a substance of SPECIFIC HEATCAPACITY (c) in order to produce a TEMPERATURE RISE (Δθ) is given by :

2


FXA @ 2008


- The **mass (m)** of the metal block is accurately measured using an electronic top-pan balance.
- The variable resistor is adjusted so as to give suitable values of voltage (V_1) and current (I_1) . The supply is then switched off and the initial temperature (Θ_i) of the block is measured and recorded.
- The supply is then switched on and the block is heated for a fixed time (say 10 minutes). The final temperature (θ_f) of the block is also measured and recorded.

Then, temperature rise of the block, $\Delta \theta_1 = \theta_f - \theta_i$

• After allowing the block to cool down to room temperature, the procedure is repeated using lower voltage (V₂) and current (I₁) values, as adjusted with the variable resistor. The block is heated for the same time as before and the **new temperature rise**, $\Delta \theta_1$ is calculated as before.

UNIT G	Module 2	4.3.3	Thermal Properties of Materials	•	PRACTICE QUESTIONS 3
	RESULTS Mass	of block, m = s heated, t =	kg s	1	Using the table of specific heat capacities given on page 2 , calculate the energy which must be supplied (or extracted) to raise (or lower) the temperature of :
	Voltage across heater Current in heater	V ₁ /V I ₁ /A θ _i /°C	V_2/V I_2/A $\Theta_i/^{\circ}C$		(a) An iron ingot of mass 12 kg from 20°C to 190°C . (b) 250 g of water from 18°C to 100°C . (c) A copper ring of mass 45 g from 20°C to -140°C .
	Initial temperature of block Final temperature of block Temperature rise of block	$\Theta_{i}/^{\circ}C$ $\Delta\Theta_{1}/^{\circ}C$	$\frac{\Theta_{i}}{\Omega_{f}} \frac{1}{C}$ $\frac{\Theta_{f}}{\Omega_{2}} \frac{1}{C}$	2	Calculate the time taken to raise the temperature of 300 g of o an aluminium , deep-fat frier of mass 0.75 kg from 20°C to 145 ° if the electric heating element has a power rating of 3.0 kW .
	CALCULATIONS electrical energy supplied = to the block.	heat energy gair by the block.		3	Why is your calculated time an under-estimate ? A 3kW electric kettle took 260 s to heat 1.8 kg of water from 18 °C to 100°C.
		$m c \Delta \Theta_1 + H$ $m c \Delta \Theta_2 + H$ $m c (\Delta \Theta_1 - \Delta \Theta_2)$	(2)		 (a) Calculate : (i) The electrical energy supplied to the kettle in this time. (ii) The internal energy gained by the water in the kettle.
	From which : c =	$\frac{V_1I_1t - V_2I_2t}{m (\Delta \theta_1 - \Delta \theta_2)}$			(b) The mass of the kettle was 1.2 kg and it was made from aluminium .
	c =		J kg ⁻¹ K ⁻¹		 (i) Calculate the internal energy gained by the kettle. (ii) Account for the difference between the electrical energy supplied to the kettle and the internal energy gained by the water and kettle.
					Use the table on page 2 to obtain the values you need for the specific heat capacities of water and aluminium .

NIT G 484	IT G484 Module 2 4.3.3 Thermal Properties of Materials	of Materials	4 (a) Draw a well-labelled graph of temperature against time to			
electric k the meta slot in th The meas graph of	surements obtain temperature ag	a slot in the ising a ther ied in the e	e cylinde mometer xperimer	r. The temper r placed in a di nt were used to	ature of fferent o plat a	show what happens when a solid object is continuously supplied with heat energy until some time after it has become a gas . Indicate those sections of the graph where the object is solid , solid + liquid , liquid + gas and gas . Show also the positions of the melting and boiling points on the temperature axis.
	perature/°C					(b) Define latent heat of fusion and latent heat of vaporisation .
40						(c) Explain the difference between evaporation and boiling .
35						
30						
25						
-				Т	ime/s	
20 k 0	200	400	600	800	1000	
(b) Calcul	rmine the temper llate the specific der is made.					
						FXA © 20